TU researchers awarded grant to buy sophisticated robotic arm - Engineering & Natural Sciences

TU researchers awarded grant to buy sophisticated robotic arm

Barrett WAM robotic arm and system components
Barrett WAM® robotic arm and system components

A small team of University of Tulsa researchers will soon purchase a Barrett WAM® robotic arm thanks to a $137,446 grant from the National Science Foundation. Joining Associate Professor of Mechanical Engineering Joshua Schultz, the group’s principal investigator, are Professor of Mechanical Engineering Steve Tipton and Associate Professor of Anthropology Danielle Macdonald. The title of their project is Major Research Instrumentation: Acquisition of a Lightweight 7-Axis Robotic Manipulator with Force Sensing for Archaeological and Engineering Research and Education.

The Barrett WAM® robotic arm is one of the most sophisticated robot manipulators in existence, used by many of the world’s leading robotics research groups. While TU has had a robotic research group for nearly a decade, the lack of a robot arm has limited the types of experiments that could be performed and required extensive time and effort to build fixtures and jigs. “This arm will be a creative tool that allows TU researchers to conduct novel experiments that advance our understanding of robots and autonomous systems,” noted Schultz.

robot hand with three fingers extended upwards and a small black ball held between the index finger and thumb
TU’s robot hand

The new arm is capable of moving a tool attached to its end to any position it can reach, at any angle. “We will use this arm to do experiments that move something over and over thousands of times, possibly changing it a little bit each time,” explained Tipton. One example he points to involves bending metal tubes back and forth to determine how many times they can bend before they break, knowledge of which is critical for determining when, for example, critical tubing systems should be removed from service.

The arm will also be used to position TU’s robotic hand so that researchers can study how to pick up and move objects with that hand. It will also be deployed to bump and push soft robots to see how they behave when they collide with other objects.

a person's hand holding a sharp stone scraping tool and scraping bark off a stick
Experimental archaeology conducted by a human, but that will be undertaken by the robot arm in future

Outside of its applicability for engineering research and teaching, the Barrett WAM® arm will be a boon for researchers in archaeology. “In this regard,” commented Macdonald, “we can program the robot to use stone and bone tools the way prehistoric people did. The wear traces on experimental archaeological tools used by the robotic arm will be compared to wear traces on artifacts, which will allow us to gain deeper insight into the lives of ancient people.”


three photos of two male professors and one female professor
Professors Tipton, Schultz and Macdonald