mechanical engineering

NSF-funded robotics project helps children with hypotonia at Little Light House

Members of the Biological Robotics at Tulsa (BRAT) Research Group in The University of Tulsa’s Department of Mechanical Engineering, are studying the muscle condition hypotonia to improve the quality of life for children who suffer from it. Graduate student Bradford Kerst and Joshua Schultz, an associate professor and BRAT group director, partnered with teachers and therapists at Little Light House in Tulsa to learn how hypotonia reduces muscle tone and strength. Their research is sponsored by a grant from the Disability and Rehabilitation Engineering program at the National Science Foundation and is TU’s first nationally funded project in rehabilitation robotics.

Understanding hypotonia

Kerst said he and Schultz are beginning the final phase of data collection through a device that supports a child’s head and is worn by Little Light House students who experience weak neck muscles as a result of hypotonia. Known commercially as a Headpod, the device holds a child’s head in a neutral posture. Current therapy for hypotonia involves supporting a child’s head from a lightweight suspension frame using a cable and head strap, but TU researchers plan to build a robotic prototype that relinquishes a portion of the support when a child does not need it. This will allow therapists to program a regimen that trains neck muscles in the hope that strength development will enable children to hold up their heads on their own.

“We will use a motion capture system and the initial data gathered to pick out the right motor size for the device, and we’re working with therapists to determine what safety features we need,” Kerst explained.

Little Light House students who have worn the data-capturing Headpod so far have been able to access switches near their head to activate a switch-adapted power wheels truck. Lynda Crouch, assistive technology coordinator at Little Light House, also explained that, in some instances, the Headpod device has been attached to a stander. “Because of the support of the Headpod, we can see secondary results of increased visual attention and social interaction with other students. Their heads are supported in an upright position to see their world. Without the Headpod, they keep their head down or we have to position them reclined in wheelchairs.”

Robotics to the rescue

With mentoring from Schultz, Kerst and an undergraduate researcher who will be added to the TU team this fall will develop biomechanical computer models to program the device’s robotic support system. The project is Kerst’s first exposure to robotics research and has piqued his interest in a career that uses rehabilitation robotics to improve head control.

“Our goal is to understand hypotonia and learn new information about the disorder that we can use in the future to help people,” he said. “It’s been overlooked in a lot of research, so it’s something Professor Schultz and the therapists discussed and saw a need to study.”

As researchers complete the final phase of data collection, Little Light House therapists anticipate a TU design that will improve head positioning for students and allow them to participate fully in daily classroom activities.

“We already knew our students were special, but this research has shown us how unique and incredible they are,” said Crouch. “We’re learning how important it is to capture data that reflects what we as therapists and teachers observe in daily interactions with the children.”

TU faculty and students have a long history of working closely with the Little Light House. Schultz and Kerst meet bi-weekly with the school’s staff to incorporate problem-solving, strategic planning and engineering applications into the plan for a therapeutic device.

Once data collection is complete, Schultz and his team of student researchers will build a prototype that they plan to begin testing in 2020.

MADE at TU builds device for special needs children at Kendall-Whittier Elementary

special needs childrenAs participants in the TU organization Make a Difference Engineering (MADE at TU), a group of mechanical engineering seniors built and designed a device for special needs children at Tulsa’s Kendall-Whittier Elementary. Nicknamed the “steamroller,” the three-piece set of children’s play equipment was developed as the students’ senior capstone project in the TU mechanical engineering program.

special needs children

 

 

TU students began meeting with teachers and staff in the fall of 2018 to determine the greatest needs for children with physical and emotional challenges at Kendall-Whittier. Once a concept was approved, students spent months designing a prototype and building the final project for delivery. The steamroller is a device that applies deep-pressure therapy useful for children on the autism spectrum, among others. The project is combined with a climbing wall and slide and engineered to fit the limited space available in Kendall-Whittier’s special needs facilities.

 

special needs childrenThe group of mechanical engineering seniors included team leader Rizka Aprilia along with Ahmed Al-Alawi, Almuqdam Al-Mawali, Ahmad Amsalam, Zach Freistadt, Hafsa Khan, Jacob Waller and Cong Xie.

True Inclusion: Senior Rachel Deeds is Building Space for Women in STEM

Engineering and other STEM fields can be a boy’s club, but mechanical engineering senior Rachel Deeds is working to make sure women have a strong future in STEM. As a student at The University of Tulsa, Deeds rose quickly through the ranks in the Society of Women Engineers, interned for national organizations during the summer and worked tirelessly to create space and opportunity for other women and girls interested in engineering.

Finding her own role models


Deeds was a little hesitant when she first became interested in STEM and had to find her own role models. One of these was her father, teaching her to fix things as a child. “He was a stay at home dad who was consistently working on a ton of different projects. I really got to experience giving back to the community in fixing things with him. He inspired me to go against the stereotype and pursue my interests in that,” she said. Deeds also looked up to the great history of women in STEM who went against the grain and innovated in their fields. This would lead her to a major in mechanical engineering at TU, with a minor in innovation and entrepreneurship.

Originally from Fayetteville, Arkansas, Deeds visited the campus several times when deciding where to finally attend school. In every visit, Deeds was blown away by how welcoming and nice people were at TU. This supportive environment along with the opportunities in her program would eventually help her move on to so much more.

Find out more about UTulsa’s STEM programs.

Internship Success


During summer breaks, Deeds landed internships with national companies that would help build her résumé and refine her interests. Deeds distinguished herself at Caterpillar, working as the only engineer on a team of business students. “It was kind of challenging at first, being that unique perspective,” Deeds reflected, but she didn’t let it discourage her.

One of the accomplishments Deeds was most proud of at Caterpillar was creating workflow, defining process maps that are still utilized by the company today. “Whenever a new product came online, I mapped out the who what and when,” she explained. Her initiative and talent set her apart in her internships. These qualities would also make her a leader at TU, and eventually in the Society of Women Engineers (SWE).

Check out how Career Services can help you find an internship like Rachel.

Leading the way for women in STEM

Rachel Deeds, women in STEMAttending the Annual SWE Conference in Philadelphia, Deeds had the opportunity to network and connect with other women in STEM fields. “As a prospective college student, I didn’t want to be the only one in my position,” Deeds said. “I looked for a way to give back to students like me.” This experience inspired Deeds to pursue a leadership position within SWE and she was eventually elected president of the TU SWE chapter.

Get connected with the UTulsa chapter of the Society of Women Engineers.

Deeds’ work in the community doesn’t stop there. She also worked with Make a Difference Engineering at TU (MADE AT TU) to design and build therapeutic devices to help special needs students in Tulsa and was selected as an SWE Future Leader, the first TU student to hold that position. As an SWE Future Leader, Deeds acted as an exponent for SWE, sharing her experience and inspiring young women around the country to become the engineers of the future.

With people like Rachel Deeds leading the way, the future for women in STEM is bright.

 

TU composite research published in Advanced Functional Materials journal

In a recent article available on the Advanced Functional Materials website, researchers in the College of Engineering and Natural Sciences at The University of Tulsa have demonstrated a new composite that can indicate damage using visual, temperature or magnetic detection. The article “Multimodal Damage Detection in Self-Sensing Fiber Reinforced Composites,” written by TU Ph.D. candidate Matthew D. Crall, Samuel G. Laney (BS ’16, MS ’18) and Associate Professor of Mechanical Engineering Michael Keller, discusses how the new material is a significant step forward in developing biomimetic materials that allow for rapid and simple detection of damage. This new technology has potential applications in aerospace, where inspecting composite materials (such as carbon fiber or fiberglass) for hidden damage is a complicated and time-consuming process.

composite research
a) Schematic of the active microvascular material system used to deliver the liquid constitutive parts of the magnetic particles. b) Mixing of the liquids causing precipitation of magnetic material in the damaged region. c) Schematic of three modes of damage detection: visual, magnetic, and thermal. Each mode is possible because of the high contrast between damaged and undamaged areas provided by the magnetic particles.

Damage detection is critical in these applications since even small damaged regions in composites can reduce the strength of the material by as much as half. The composite works by incorporating a small channel, such as a blood vessel, that is filled with a liquid, like blood.  Damage breaks open the channels and the fluids bleed into the damaged area where they react and form magnetic particles. These particles can then be detected by a magnetic detector, heated by a magnetic field and imaged with an IR camera, or seen visually by the color change associated with the reaction.

To learn more about this research and the published paper in Advanced Functional Materials, please contact Associate Professor of Mechanical Engineering Michael Keller at 918-631-3198 or mwkeller@utulsa.edu.

Engineering team wins class prize

Throughout their collegiate careers, TU engineering students are encouraged to experiment with original ideas and tackle product design from scratch. For more than 20 years, Professor John Henshaw, chair of the Department of Mechanical Engineering, has tasked his students with performing failure analysis on commercial products. In 2014, the project became a class competition, and the winning team featured three female engineers.

Seniors Hannah Emnett, Hannah O’Hern and Katy Riojas, a 2015 Goldwater Scholar, under the team name KH2, conducted a failure analysis on a pair of German double-action bone-cutting forceps, used primarily in cardiovascular surgery. Of the eight independent analyses conducted by the team, Riojas said all pertained directly to the forceps’ material properties. “For example, in order to determine the specific type of steel used to create the forceps, we performed a microhardness test and a metallurgical analysis,” she said.

team project
Mechanical engineering students Hannah O’Hern, Katy Riojas and Hannah Emnett.

The students were required to answer three questions: How the forceps failed, how they functioned and how they could be redesigned to prevent additional failures. Team KH2 determined the forceps failed from mechanical overload caused by the stress concentration at the base of the device’s pincer. According to the team, the force required to cut a bone is much less than the force required to fracture the forceps, suggesting the forceps failed from misuse. Additionally, the surface clearly indicated a brittle fracture, which was further evidence of failure from misuse.

“Our mission was to take the design one step further and improve the safety of the forceps to prevent future failures, even those caused through misuse,” Emnett said.

KH2 recommended increasing the radius at the base of the pincer to minimize the stress concentration. Also, increasing the cross-sectional area at the base of the pincer would alleviate induced stress on the forceps. The redesign reduced maximum stress by 42 percent.

In addition to teaching students the importance of thorough product testing, Riojas said the process has confirmed her desire to pursue a career in medical device testing and design. She and the KH2 team received Lowe’s gift cards as the inaugural class winners of the Hackworth-Wilson Prize for Excellence in Failure Analysis, a new award named in honor of mechanical engineering alumni Matt Hackworth (BS ’96, MS ’98, PhD ’00) and Kelly (Wilson) Hackworth (BS ’96, MS ’98), former TU classmates who are married and now serve on the TU Mechanical Engineering Industrial Advisory Board. Matt’s project as a student in the mechanical engineering course involved the analysis of an exploded soda can under the mentorship of Henshaw.

“Matt and I did close to $1 million in external research for Alcoa, Coca-Cola, Anheuser-Busch and others,” Henshaw said. “When he and Kelly asked how they might give back to TU in a creative way, we established the Hackworth-Wilson Prize.”

To learn more about supporting students in the College of Engineering and Natural Sciences, please contact ENS Director of Development Natalie Adams at 918-631-3287, or natalie-adams@utulsa.edu.