Mechanical engineering doctoral student Caroline Schell and postdoctoral associate Peter Bui take us inside the emerging field of soft robotics in this experTU video. Members of Biological Robotics at Tulsa, these scholars understand what it takes to make their soft robot, fittingly named “Squishy,” respond to its environment, fragile objects and touch.
TU’s soft robot, Squishy, displaying a wrinkle (circled in red)
Associate Professor of Mechanical Engineering Joshua Schultz traveled to Philadelphia to attend and present recent research on soft robotics at the International Conference on Robotics and Automation (ICRA) conference. This gathering is the IEEE Robotics and Automation Society’s flagship conference. Because of the COVID-19 pandemic, it was Schultz and his collaborators’ first in-person presentation since receiving the National Science Foundation Emerging Frontiers grant in January 2020.
In an earlier paper published in Frontiers in Robotics and AI, Schultz and Postdoctoral Associate Peter (Phuc D.H.) Bui reported on the development of a semilinear parameter-varying observer (state estimator) they tested on an inflatable, fabric-reinforced soft robot named Squishy. Drawing on that work, for their ICRA presentation the duo, along with collaborators at Brigham Young University, focused on a method for dynamically simulating soft robots to predict their future movements.
Illustration of the mathematical relationships between two adjacent “discs” along the “thread” that joins them in the dynamic simulation environment
“The simulation environment presented at ICRA is really the flip side of the state estimator [described in the Frontiers article] coin,” remarked Schultz. “We shared with conference attendees our findings on how to simulate the movement of robots like ‘Squishy’ (TU’s inflatable fabric-reinforced tentacle robot), which allows us to predict where it will be in the future.”
Schultz and his colleagues expect that the new “disc-thread” simulation environment will better represent motions that occur within Squishy’s wrinkles, pleats and folds. By combining their earlier work with their more recent investigation, Schultz says they should be able to control the robot and drive it to a sequence of positions and shapes that will complete a useful task, such as cleaning or polishing a surface.
Meet Squishy and learn more about soft robotics and the related research going on at TU in this short video.
Joshua Schultz (right) at the ICRA conference with former student Tyler Morrison (BSME ’17), who recently earned a Ph.D. at Ohio State University
The research reported in this story is supported by NSF grant No. 1935312 EFRI C3 SoRo: Between a Soft Robot and a Hard Place: Estimation and Control Algorithms that Exploit Soft Robots’ Unique Abilities.
It’s hard not to be fascinated by robots! And there’s no better place for you to gain the knowledge, skills and networks you crave than TU’s Department of Mechanical Engineering.
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.