The University of Tulsa

TU’s Conner Bender awarded Truman Scholarship for public service

University of Tulsa computer science senior Conner Bender has received the honorable Truman Scholarship, the premier graduate fellowship in the United States for those pursuing careers in public service leadership. The scholarship, awarded in 2019 to 62 students from 58 institutions nationwide, is the hallmark of the Truman Foundation, the nation’s official living memorial to the 33rd U.S. President Harry S. Truman. Bender will receive a maximum of $30,000 for graduate study.

conner bender
Bender with Jim Sorem, dean of the College of Engineering and Natural Sciences

Originally from Jenks, Bender is double majoring in computer science and mathematics, while earning his master’s degree in cyber operations. He will graduate with his bachelor’s degrees in May 2019 and continue his graduate degree at TU next fall. He serves as TU’s student body president, an ex-officio member of the Board of Trustees, president of Future Alumni Council, and founding president of the Rotaract Club. Bender is a Presidential Scholar, Stanford University Innovation Fellow, orientation leader, university ambassador, triathlete and marathon runner-up.

Bender used his computer science skills to establish a meal swipe donation program and was awarded the prestigious TU Medicine Wheel Award for Community Service. He is a two-time teaching assistant for the TU President Gerard Clancy and one of 10 U.S. undergraduates selected for a Fulbright Summer Institute in Scotland. Bender was named 2019 Greek Man of the Year and has held several internships and research positions with the U.S. government. He created a free iPad app that enhances word association and motor skills for people with disabilities and at Harvard, helped develop an emotion-based text reading application for Android users who are blind or visually impaired.

Bender is a local nonprofit board member, a cappella singer in Phi Mu Alpha, ministry team member for Reformed University Fellowship and was selected to lobby for the Fraternal Governmental Relations Coalition. He also serves as the Philanthropy Committee undergraduate representative, ritual peer for the Sigma Chi International Fraternity and vice president of TU’s chapter of Sigma Chi. Bender is a member of the Diversity Action Committee, Foundation of Excellence Committee, University Council and Student Conduct Board. He also is a notary public and is in the process of obtaining his private pilot license.

This year’s Truman Scholars were selected from 840 candidates nominated by 346 colleges and universities — the largest and one of the most competitive application pools in Truman Scholar history. Finalists were chosen by 16 independent selection panels based on their academic success and leadership accomplishments, as well as their likelihood of becoming public service leaders.

 

TU’s Benjamin James and Jordan Sosa receive NSF Graduate Research Fellowships

Two students from The University of Tulsa have been awarded Graduate Research Fellowships from the National Science Foundation. TU’s 2019 recipients are Jordan Sosa, a physics senior from Florissant, Missouri, and Benjamin James, a computer science senior, from St. Louis, Missouri.

The NSF Graduate Research Fellowship Program recognizes and supports outstanding graduate students in the science, technology, engineering and mathematics disciplines who are pursuing research-based master’s and doctoral degrees at accredited institutions in the United States. Fellows receive a three-year annual stipend of $34,000 along with a $12,000 education allowance for tuition and fees. Other benefits include opportunities for international research and professional development and the option to conduct research at any accredited U.S. institution of graduate education.

Jordan Sosa

jordan sosaSosa currently focuses on materials research and metallic materials as a student in the TU Department of Mechanical Engineering. As a TU undergraduate, Sosa has received valuable experience in physics, materials science and engineering as a visiting researcher at West Virginia University, Oklahoma State University-Tulsa and the University of Wisconsin-Madison. In addition to his academic and research agenda, Sosa has served in leadership roles for TU’s Society of Hispanic Professional Engineers and the Society of Physics Students, attended the National Institute for Leadership Advancement and helped host a Noche de Ciencias, or “Night of Sciences” community event that invited local public school children to learn about STEM degrees.

“These experiences have instilled a stronger desire in me to pursue a higher degree so I can develop a stronger understanding of STEM and provide others with access to that education,” he said.

He plans to earn a Ph.D. degree in materials science and engineering in research fields of energy storage and eventually work in a laboratory or the research and development department of a materials technology company.

Benjamin James

benjamin jamesJames has performed research in the bioinformatics subfield computational genomics, which emphasizes the use of computational and statistical techniques such as algorithms and machine learning/artificial intelligence to solve biological problems.

“At TU, under the mentorship of Dr. Hani Girgis, I created intelligent and adaptive software systems to compare and cluster nucleotide sequences, especially long, genome-length sequences, as a method of in silico data analysis for computational biologists,” James said.

The clustering algorithm currently is used by biologists in multiple pipelines, including groups of third-generation sequencing reads and grouping of microbial communities. James plans to attend graduate school and work independently on bioinformatics research projects that can have a positive impact on society.

Foutch and Inhofe named to ENS Hall of Fame

The University of Tulsa College of Engineering and Natural Sciences inducted Oklahoma energy entrepreneur Randy Foutch and U.S. Sen. Jim Inhofe into its Hall of Fame during a special ceremony March 7, 2019, at Gilcrease Museum. Foutch and Inhofe were honored for their outstanding accomplishments and contributions that bring significant recognition to TU.

Randy A. Foutch

Randy FoutchRandy A. Foutch is an experienced energy executive and advocate for independent oil companies across the nation and has established several successful startup companies as a respected leader in the oil and gas industry. He has served as chairman of the Oklahoma Energy Resources Board and the International Society of Energy Advocates and is a previous director of the Oklahoma Independent Petroleum Association.

Foutch currently is chairman and CEO of Tulsa-based Laredo Petroleum Inc., a New York Stock Exchange listed company, LPI, which he founded in 2006. Laredo is an oil and gas company focused on exploration, development and acquisitions in the Permian Basin in West Texas. Prior to Laredo, Foutch founded and later sold Colt Resources (1996), Lariat Petroleum Inc. (2001) and Latigo Petroleum Inc. (2006).

Foutch has been a loyal supporter of The University of Tulsa for more than a decade, designating funding to areas such as the McDougall School of Petroleum Engineering, Gilcrease Museum and Golden Hurricane athletics. He currently serves on the board of directors of Helmerich & Payne and The National Petroleum Council, The Independent Petroleum Association of America and is chairman of the Energy Institute Advisory Board at the University of Texas at Austin. Previously, he served on the board of directors of Cheniere Energy, Bill Barrett Corporation and MacroSolve Inc., among others. Foutch is a member of several nonprofit and private industry boards including the Gilcrease Museum National Advisory Board and The University of Tulsa Board of Trustees. A licensed pilot, his passions for aviation and the history of westward expansion as well as the art and artists of the great American West are reflected in his support of Gilcrease Museum and the C.M. Russell Museum in Great Falls, Montana. Foutch has been inducted into the Tulsa Historical Society Hall of Fame and the TU Collins College of Business Hall of Fame and is a current member of the Golden Hurricane Club. He holds a bachelor of science degree in geology from the University of Texas and a master of science degree in petroleum engineering from the University of Houston.

Foutch and his wife, Jean, are parents of four grown daughters and have four grandchildren.

James M. Inhofe

Jim InhofeJames M. Inhofe serves as Oklahoma’s senior U.S. senator and is chairman of the Senate Armed Services Committee. Inhofe is a proud Oklahoman and long-time resident of Tulsa. He received a bachelor of arts degree in economics from The University of Tulsa in 1973 and was first elected to the United States Senate in 1994.

Inhofe has supported the Integrated Petroleum Environmental Consortium, a joint project involving TU, the University of Oklahoma, Oklahoma State University and other companies and institutions. As a longstanding supporter of Oklahoma’s energy and aviation industries, he has contributed to the Center for Aviation Systems Support and Infrastructure, a collaboration between TU, OU, OSU and Tinker Air Force Base, while advocating for TU advancements in computer science and cybersecurity.

In Inhofe’s 25 years of public service as a U.S. senator, he has championed long-term reform to increase the efficiency and effectiveness of the Defense Department and has focused on streamlining the acquisition process. He has received the Eisenhower Award from the National Defense Industrial Association for his commitment to raising public awareness of U.S. military and defense community needs.

Inhofe serves as chairman of the Subcommittee on Transportation and Infrastructure of the Committee on Environment and Public Works and is a member of the Senate Committee on Commerce, Science and Transportation. As a committed supporter of U.S. infrastructure, he has worked to implement policies that encourage the United States to meet its energy needs domestically. One of his greatest achievements to date began in 1999 when Inhofe introduced a bill to give states the freedom to make their own decisions about oil and natural gas regulatory structures, including those concerning hydraulic fracturing. The bill was incorporated in the Energy Policy Act of 2005.

An avid pilot with more than 11,000 flight hours, Inhofe is an advocate for aviation professionals and became the only member of Congress to fly an airplane around the world when he recreated Wiley Post’s legendary trip around the globe.

Prior to the U.S. Senate, Inhofe served in the U.S. House of Representatives, the Oklahoma House and Senate and as mayor of Tulsa. He and his wife, Kay, have been married 58 years and have 20 children and grandchildren.

 

True Determination: TU PetroBowl team takes first place at regionals

The University of Tulsa PetroBowl team won the Society of Petroleum Engineers North American Regional Qualifier February 3 in Houston, Texas. TU competed against 20 teams in this fast-paced quiz competition, defeating UT-Austin for first place.

PetroBowl
The TU PetroBowl team celebrates first place with its winning bracket.

As regional winners, TU team members and petroleum engineering students Juan Diego Comella, Umer Farooq, Blazej Ksiazek, Misael Morales and Luke Moran are invited to compete at the Society of Petroleum Engineers (SPE) Annual Technical Conference and Exhibition (ATCE) World Championship in Calgary, Canada, next fall. Farooq, captain of the TU PetroBowl team said, “We go very hard on preparation, but we know the potential is out there from the other teams as they are the best of the best from colleges all across the world. But (when we went to Houston), we did our thing, it went really well, and we were No 1.”

The PetroBowl competition coordinates student SPE chapters to battle against each other in a series of quick-fire questions. Four-member student teams compete in petroleum engineering trivia, including technical and nontechnical industry-related questions. The PetroBowl was founded by the Society of Petroleum Engineers International.

Each member of the team studies a category of the questions to make rehearsing easier. Farooq, a-soon-to-be Ph.D. degree graduate in petroleum engineering, studies reservoir and formation evaluation. Comella focuses on drilling, production and general knowledge, in addition to SPE history. Morales concentrates on geology and geophysics and Moran on drilling and well completions. Ksiazek is a sophomore and the current alternate for the team as well as the TU SPE PetroBowl chair, concentrating on drilling and general knowledge in addition to SPE history. Mike Stafford, faculty instructor in petroleum engineering, is the SPE PetroBowl faculty adviser for the TU team.

PetroBowl
Left to right: Team members Blazej Ksiazek, Luke Moran, Misael Morales, Juan Diego Comella and Umer Farooq

Comella explains that Farooq is dedicated to the group’s success. “Our captain is really like a coach. He writes questions for us to practice and has been doing this for a while.” The team meets once a week until closer to competition when they begin meeting every few days.

“PetroBowl is important because it gives you contact with different people – different backgrounds, different years in school, different passions in petroleum engineering,” Ksiazek said. “You learn so much at TU with a petroleum engineering degree, but with PetroBowl you can learn even more about the field.”

Farooq agrees and said, “It’s a great way to represent TU on an international level.”

For the future, the TU PetroBowl team is brainstorming to create an internal PetroBowl event for just TU petroleum engineering students, similar to an event held in 2016. They also have an idea to create an A team and B team to recruit students for future competitions. “There’s a lot of talent at TU and this is a commitment, but we are looking forward to what’s next,” Farooq said. “I believe our team is very capable of clinching the victory in Calgary this fall.”

TU receives $50,000 grant from AEP Foundation for engineering labs

The University of Tulsa has received a $50,000 grant from Public Service Company of Oklahoma (PSO) on behalf of the American Electric Power Foundation to bring new state-of-the-art equipment and technologies to TU’s Department of Electrical and Computer Engineering.

AEP
Left to right: PSO President and COO Peggy Simmons, Applied Associate Professor of Electrical and Computer Engineering Douglas Jussaume, PSO Vice President of Distribution Steven Baker, Hans S. Norberg Professor of Electrical and Computer Engineering Kaveh Ashenayi and College of Engineering and Natural Sciences Dean Jim Sorem

The grant will support updates to the department’s Electric Machines Lab, initiating a Power Electronics Lab and supporting physical modifications of lab space.

“I am pleased to announce this grant that will help prepare the next generation of electrical engineers to take on the challenges and opportunities of working with one of the largest, most complex machines in the world – the electricity grid,” said Peggy Simmons, president and chief operating officer for Public Service Company of Oklahoma (PSO), a subsidiary of AEP. “It’s vital to have highly specialized engineers working to meet the challenges our industry is facing – and will continue to face in the future – as we look more and more toward renewable and alternative energy, smart grids and other potentially transformational technologies.”

Housed in the university’s College of Engineering and Natural Sciences, the ECE department offers degrees in both electrical engineering and computer engineering. The department currently has 106 undergraduate, eight master’s and nine doctoral students.

“We are grateful to PSO and AEP Foundation for partnering with us to provide students and faculty with cutting-edge facilities. We are eager to work with industry leaders to offer hands-on opportunities that give them an advantage when they start their careers,” TU President Gerard Clancy said. “The University of Tulsa is committed to empowering students with the knowledge and experience to solve the world’s toughest problems. Educating innovative leaders and providing up-to-the-minute technology – such as the labs made possible by this grant – set our students apart.”

About PSO
PSO, a unit of American Electric Power (NYSE: AEP), is an electric utility company serving more than 550,000 customers accounts in eastern and southwestern Oklahoma. Based in Tulsa, PSO has nearly 3,800 megawatts of generating capacity and is one of the largest distributors of wind energy in the state.

TU composite research published in Advanced Functional Materials journal

In a recent article available on the Advanced Functional Materials website, researchers in the College of Engineering and Natural Sciences at The University of Tulsa have demonstrated a new composite that can indicate damage using visual, temperature or magnetic detection. The article “Multimodal Damage Detection in Self-Sensing Fiber Reinforced Composites,” written by TU Ph.D. candidate Matthew D. Crall, Samuel G. Laney (BS ’16, MS ’18) and Associate Professor of Mechanical Engineering Michael Keller, discusses how the new material is a significant step forward in developing biomimetic materials that allow for rapid and simple detection of damage. This new technology has potential applications in aerospace, where inspecting composite materials (such as carbon fiber or fiberglass) for hidden damage is a complicated and time-consuming process.

composite research
a) Schematic of the active microvascular material system used to deliver the liquid constitutive parts of the magnetic particles. b) Mixing of the liquids causing precipitation of magnetic material in the damaged region. c) Schematic of three modes of damage detection: visual, magnetic, and thermal. Each mode is possible because of the high contrast between damaged and undamaged areas provided by the magnetic particles.

Damage detection is critical in these applications since even small damaged regions in composites can reduce the strength of the material by as much as half. The composite works by incorporating a small channel, such as a blood vessel, that is filled with a liquid, like blood.  Damage breaks open the channels and the fluids bleed into the damaged area where they react and form magnetic particles. These particles can then be detected by a magnetic detector, heated by a magnetic field and imaged with an IR camera, or seen visually by the color change associated with the reaction.

To learn more about this research and the published paper in Advanced Functional Materials, please contact Associate Professor of Mechanical Engineering Michael Keller at 918-631-3198 or mwkeller@utulsa.edu.